Sail into Summer with Math! For Students Entering 7th Prealgebra II ## **Math B Summer Mathematics Packet** ## Table of Contents | Page | Objective | Suggested Completion Date | |------|---|------------------------------| | 1 | Write Numbers in Words and Digits | June 22 nd | | 2 | Rename Fractions, Percents, and Decimals. | June 25 th | | 3 | Order Decimals | June 29 th | | 4 | Add and Subtract Whole Numbers | July 6 th | | 5 | Multiply and divide Whole Numbers | | | 6 | Add Mixed Numbers | | | 7 | Subtract Mixed Numbers | | | 8 | Multiply Fractions and Solve Proportions | | | 9 | Add and Subtract Decimals | July 23 rd | | 10 | Multiply and Divide Decimals | | | 11 | Find Percent of a Number | July 30 th | | 12 | Reading Scales and Finding Area and Perin | neter August 3 rd | | 13 | Find the Average of a Set of Numbers | August 10 th | | 14 | Solve Problems using Percent | August 14 th | | 15 | Integers I | August 18 th | | 16 | Integers II | August 21 st | ## Write Numbers in Words and Digits | Ш: | 4-1 | | ٠, | |-----|-----|-----|-----| | Hin | LS/ | Cru | ude | | In order to read numbers correctly, we need to be | | | | |---|----------------|-----------|--------------| | In order to read numbers correctly, we need to know the order
the following: | er of each pla | ce value. | The order is | | 1.000 000 is one million | | | 5 | 1,000,000 is one million 10,000 is ten thousand 100 is one hundred I is one 100,000 is one hundred thousand 1,000 is one thousand 10 is ten 0.1 is one tenth 0.01 is one hundredth So, the number 354.67 is read as three hundred fifty four and sixty-seven hundredths and 3,500,607.004 is read as three million, five hundred thousand, six hundred seven and four thousandths. Please remember that the word "and" indicates and location of the decimal point in mathematics and should not be used anywhere else (for example, it is inappropriate to read 350 as three hundred and fifty, because "and" means a decimal point). Also, the term "point" in mathematics is a geometry term and should not be used in naming numbers (for example, 3.5 is not three "point" five, but rather three and five tenths). | T | | | |-----|-------|---| | HVA | cises | | | LAL | C12C2 | Ē | | Write the number name: | | | |---|-----------------------------|--| | 1. 560.08 | | | | 2. 7.016 | T | | | 3. 24.47 | | | | 4. 6,003 | | | | 5. 3,005,600.07 | | | | Write the number the name repr | esents: | | | 6. Forty-five thousandth | S | | | 7. Seventeen and seven I | oundredths | | | 8. Five million, three hun twenty-nine and si | ndred thousand,
x tenths | | | 9. Six million and five the | ousandths | | 10. Two hundred eight thousand, four ## Rename Fractions, Percents, and Decimals Hints/Guide: To convert between fractions and percents, we must first convert fractions into decimals: We start with the fraction, such as $\frac{3}{5}$, and divide the numerator (the top number of a fraction) by the denominator (the bottom number of a fraction). So: $$\frac{3}{5}$$ is equivalent to 0.6 Of $$\frac{2}{9}$$ is equivalent to $0.\overline{2}$ To convert a decimal to a percent, we multiply the decimal by 100 (percent means a ratio of a number compared to 100). A short-cut is sometimes used of moving the decimal point two places to the right (which is equivalent to multiplying a decimal by 100, so $$0.6 \times 100 = 60$$ and $$\frac{3}{5} = 0.6 = 60\%$$ To convert a percent to a decimal, we divide the percent by 100, 60% = 0.6 $$60\% \div 100 = 0.6$$ Exercises: No Calculators! Rename each fraction as a decimal: $$1. \frac{1}{5} =$$ $$2. \frac{3}{4} =$$ 3. $$\frac{1}{2}$$ = 4. $$\frac{1}{3}$$ = 5. $$\frac{8}{10}$$ = 6. $$\frac{2}{3}$$ = Rename each fraction as a percent: 7. $$\frac{1}{5}$$ = 8. $$\frac{3}{4}$$ = 9. $$\frac{1}{2}$$ = 10. $$\frac{1}{3}$$ = 11. $$\frac{8}{10}$$ = 12. $$\frac{2}{3}$$ = Rename each percent as a decimal: #### **Order Decimals** #### Hints/Guide: To compare decimals and list them from least to greatest, it is easier to compare decimals that are the same place value, so one process we can use to compare decimals is to include trailing zeros to make all of the decimals that same place value. For example, to put the following in order from least to greatest: .3, 1.61, .006, .107 is easier to compare as: 0.300, 1.610, 0.006, 0.107 to achieve 0.006, 0.107, 0.300, 1.610 and then return to the original form: 0.006, 0.107, 0.3, 1.61 #### Exercises: List each group of numbers in order from least to greatest: | 1 | . 20, 4, .6, .08 | 2. 246.8, 248.6, 244.9, 246.5 | |-----|---------------------------|-------------------------------| | 3. | 1.03, 2.4, .89, .987 | 4. 14.8, 2.68, .879, 8.47 | | 5. | 5.3, 5.12, 5.38, 5.29 | 6. 54.89, 56.3, 58.1, 52.98 | | 7. | 4, .006, .8, .07 | 8. 297, 3.456, 64.4, 7.24 | | 9. | 794, 793.8, 794.65, 794.7 | 10. 9, 6.7, 7.24, 14 | | 11. | 4.2, 4.19, 4.07, 4.3 | 12. 3.75, 6.7, 3.8, .45 | #### Add and Subtract Whole Numbers Hints/Guide: The key in adding and subtracting whole numbers is the idea of regrouping. If a column adds up to more than ten, then the tens digit of the sum needs to be included in the next column. Here is an example of the steps involved in adding: Because 6 + 7 = 13, the 3 is written in the ones digit in the solution and the 1 is regrouped to the tens digit. Then, 1 + 4 + 5 = 10, the 0 is written in the tens digit of the solution and the 1 is regrouped to the hundreds place of the problem. Finally, since 1 + 3 + 1 = 5, the solution is 503. For subtraction, regrouping involves transferring an amount from a higher place value to lesser place value. For example: Because 7 cannot be taken from 6 in the set of whole numbers, we must regroup 1 ten to create 16 - 7, which is 9. Then, since we have taken 1 ten, the 4 has become 3, and we must take 1 from the 3 to create 13, and 13 - 5 = 8. Finally, we have 2 hundreds remaining, and 2 - 1 = 1, so the solution is 189. Exercises: Solve: No Calculators! ## Multiply and Divide Whole Numbers Hints/Guide: To multiply whole numbers, we must multiply the first number by one digit of the second number. The key is that when multiplying by each digit we must remember the place value of | | To multiplying DV. | of the place value of | |--|--|---| | 534
<u>x</u> 46
3204
21360
24562 | So we first multiply 534 by similar to adding, so 6 x 4 = the next product). Next, a multiplying by the 4 in 46 th | 6 to get 3204 (This is done by regrouping digits 24, the 4 is written down and the 2 is added to zero is placed in the ones digit because when e are multiplying by the tens digit, or 40. Next, 360. Finally, we add the two products together | | الاستال الأراث | | | To divide whole numbers, we must know basic division rules are the opposite of multiplying rules. So if we know our times tables, we know how to divide (a review over the summer might not be a bad idea!). Since 3 x 4 is 12, then $12 \div 4 = 3$ and $12 \div 3 = 4$. Again, we deal with one | | e , re deal with one | |-----------------------|---| | -36
48
-48
0 | First, we notice that 12 does not divide into 7, so we determine how many times 12 goes into 76. This is 6. Next, multiply 6×12 and place the answer, 72, under the 76 you have used. Now, subtract $76 - 72$ and place the 4 underneath the 72. Bring down the next digit from the number being divided, which is 0, and determine how many times 12 goes into 40. The answer is 3 and $3 \times 12 = 36$, so place 36 under the 40. Now, subtract $40 - 36$ and place the 4 under 36 and bring down the 8. 12 goes into 48 four times evenly, so there is no remainder in this problem. | | Diggar C 1 | | Exercises: Solve: | 1. 742
<u>x 17</u> | 2. 25
<u>x 13</u> | 3. 659 x 7 | No Calculators! 4. 407 x 29 | |-----------------------|----------------------|--------------|------------------------------| | 5. 81
<u>x 5</u> | 6. 86)2,236 | 7. 57)13,338 | 8. 5)205 | | 9. 7)1463 | 10. 16)3840 | 11. 11)2211 | 12. 9)3789 | ## Add Mixed Numbers Hints/Guide: When adding mixed numbers, we add the whole numbers and the fractions separately, then simplify the answer. For example: $$4\frac{1}{3} = 4\frac{8}{24}$$ $$+2\frac{6}{8} = 2\frac{18}{24}$$ $$6\frac{26}{24} = 6 + 1\frac{2}{24} = 7\frac{2}{24} = 7\frac{1}{12}$$ First, we convert the fractions to have the same denominator, then add the fractions and add the whole numbers. If needed, we then simplify the answer. Exercises: Solve in lowest terms: No Calculators! SHOW ALL WORK. Use a separate sheet of paper (if necessary) and staple to this page. 1. $$2\frac{1}{4}$$ $+8\frac{1}{2}$ $$\begin{array}{r} 3 \frac{8}{15} \\ + 7 \frac{1}{3} \end{array}$$ 3. $$3\frac{3}{5}$$ $+5\frac{1}{2}$ $$\begin{array}{r} 5\frac{3}{8} \\ 4. \\ +4\frac{1}{4} \end{array}$$ $$\begin{array}{r} 7\frac{3}{7} \\ + 6\frac{1}{2} \end{array}$$ 6. $$5\frac{5}{9}$$ 7. $$4\frac{1}{3}$$ $+ 6\frac{1}{4}$ 8. $$1\frac{2}{3} + 6\frac{1}{4}$$ 9. $$1\frac{2}{9}$$ #### Add and Subtract Decimals Hints/Guide: When adding and subtracting decimals, the key is to line up the decimals above each other, add zeros to have all of the numbers have the same place value length, then use the same rules as adding and subtracting whole numbers, with the answer having a decimal point in line with the problem. For example: $$34.5 + 6.72 + 9.045 = 6.72 = 6.720$$ $$+ 9.045 + 9.045$$ $$50.265$$ AND $$5 - 3.25 = 5.00$$ $$- 3.25$$ $$1.75$$ Exercises: Solve: No Calculators! SHOW ALL WORK. Use a separate sheet of paper (if necessary) and staple to this page. 1. $$15.7 + 2.34 + 5.06 =$$ $$2.64.038 + 164.8 + 15.7 =$$ $$3. 2.6 + 64.89 + 4.007 =$$ 4. $$12.9 + 2.008 + 75.9 =$$ 6. $$2.6 + 4.75 =$$ 7. $$43.31 + 7.406 =$$ 10. $$3.8 + .76 + .008 =$$ 13. $$68.9 - 24.74 =$$ $$20. 15 - 2.43 =$$ #### Multiply and Divide Decimals Hints/Guide: To multiply decimals, the rules are the same as with multiplying whole numbers, until the product is determined and the decimal point must be located. The decimal point is placed the same number of digits in from the right of the product as the number of decimal place values in the numbers being multiplied. For example: 8.54×17.2 , since $854 \times 172 = 146888$, then we count the number of decimal places in the numbers being multiplied, which is three, so the final product is 146.888 (the decimal point comes three places in from the right). To divide decimals by a whole number, the process of division is the same, but the decimal point is brought straight up from the dividend into the quotient. For example: $\frac{17.02}{3 \cdot 51.06}$ The decimal point moves straight up from the dividend to the quotient. Exercises: Solve: No Calculators! SHOW ALL WORK. Use a separate sheet of paper (if necessary) and staple to this page. #### Find Percent of a Number Hints/Guide: To determine the percent of a number, we must first convert the percent into a decimal by dividing by 100 (which can be short-cut as moving the decimal point in the percentage two places to the left), then multiplying the decimal by the number. For example: 45% of 240 = 45% x 240 = 0.45 x 240 = 108 Exercises: Solve for n: No Calculators! SHOW ALL WORK. Use a separate sheet of paper (if necessary) and staple to this page. 1. $$30\%$$ of $450 = n$ 2. $$7\% \text{ of } 42 = n$$ 3. $$10\%$$ of $321 = n$ 4. $$15\%$$ of $54 = n$ 5. $$65\%$$ of $320 = n$ 6. $$80\%$$ of $64 = n$ 7. $$9\% \text{ of } 568 = n$$ 8. $$15\%$$ of $38 = n$ 9. $$25\%$$ of $348 = n$ 10. $$85\%$$ of $488 = n$ 11. $$90\%$$ of $750 = n$ 12. $$6\%$$ of $42 = n$ 13. $$60\%$$ of $78 = n$ 14. $$4\%$$ of $480 = n$ 15. $$10\%$$ of $435 = n$ 16. $$24\%$$ of $54 = n$ #### Reading Scales and Finding Area and Perimeter #### Hints/Guide: To determine the correct answer when reading scales, the important thing to remember is to determine the increments (the amount of each mark) of the given scale. To find the perimeter of a rectangle or square, we must add the lengths of all of the sides together. To find the area of a square or a rectangle, we must multiply the length by the width. #### Exercises: 1. Find the length of each line to the nearest inch: - 2. Find the temperature in Celsius - 3. Determine the amount of liquid in ml. #### Find the Average of a Set of Numbers Hints/Guide: To find the average of a set of numbers, we add together all of the numbers and then divide by how many numbers are in the data set. For example: If the tests scores are 73, 87, 94, 84, 92, and 95, then we add the scores together: 73 + 87 + 94 + 84 + 92 + 95 = 525, and since there are 6 numbers in the data set, we divide 527 by 6 and get the quotient of 87.5. Exercises: No Calculators! SHOW ALL WORK. Use a separate sheet of paper (if necessary) and staple to this page. For problem 1, use the following chart | Week | Monday | Tuesday | Wednesday | Thursday | Friday | |------|--------|---------|-----------|----------|--------| | 1 | 65 | 68 | 72 | 74 | 68 | | 2 | 68 | 75 | 80 | 68 | 75 | | 3 | 75 | 74 | 69 | 79 | 80 | | 4 | 80 | 82 | 76 | 67 | 79 | 1. Find the average (mean) temperature for: | Monday | Tuesday | Wednesday | |----------|---------|---------------------| | Thursday | Friday | Post and the second | 2. If George has test scores of 85, 88, 92, and 87, what is his average (mean) score? Challenge: Using the same test scores for George, what would his fifth test score need to be to have an average (mean) grade of 90? 3. If Tina's bowling scores were 120, 155, 145, 162, and 138, what was her average (mean) score? Challenge: What would Tina's score need to be in the sixth game if she wanted an average over those six games of 145? #### Solve Problems using Percent Hints/Guide: When solving percent problems, we apply the rules for finding percent of a number in realistic situations. For example, to find the amount of sales tax on a \$450.00 item if the tax rate is 5%, we find 5% of $450 (.05 \times 450 = 22.5)$, and then label our answer in dollars, getting \$22.50. Exercises: No Calculators! SHOW ALL WORK. Use a separate sheet of paper (if necessary) and staple to this page. - 1. Susie has just bought a pair of jeans for \$45.00, a sweater for \$24.00, and a jacket for \$85.00. The sales tax is 5%. What is her total bill? - 2. Jack bought a set of golf clubs for \$250.00 and received a rebate of 20%. How much was the rebate? - 3. A construction manager calculates it will cost \$2,890 for materials for her next project. She must add in 10% for scrap and extras. What will be the total cost? - 4. The regular price for a video game system is \$164.50 but is on sale for 30% off. What is the amount of the discount? What is the sale price? - 5. Cindy earns a 15% commission on all sales. On Saturday, she sold \$980 worth of merchandise. What was the amount of commission she earned on Saturday? - 6. The band had a fundraiser and sold \$25,000 worth of candy. They received 40% of this amount for themselves. How much did they receive? #### Integers I Hints/Guide: To add integers with the same sign (both positive or both negative), add their absolute values and use the same sign. To add integers of opposite signs, find the difference of their absolute values and then take the sign of the larger absolute value. To subtract integers, add its additive inverse. For example 6 - 11 = a becomes 6 + -11 = a and solves as -5 = a. Exercises: Solve the following problems: No Calculators! 1. $$6 + (-7) =$$ $$2. (-4) + (-5) =$$ 3. $$6 + (-9) =$$ 4. $$(-6) - 7 =$$ $$6.7 - (-9) =$$ 7. $$5 + (-8) =$$ 8. $$-15 + 8 =$$ 9. $$14 + (-4) =$$ 10. $$-9 - (-2) =$$ $$12. -8 - (-19) =$$ 13. $$29 - 16 + (-5) =$$ $$14. -15 + 8 - (-19) =$$ 15. $$45 - (-13) + (-14) =$$ $$16. -15 - 6 - 9 =$$ 17. $$-7 + (-6) - 7 =$$ 18. $$29 - 56 - 78 =$$ 19. $$17 + (-7) - (-5) =$$ 20. $$45 - (-9) + 5 =$$ #### Integers II Hints/Guide: The rules for multiplying integers are: Positive x Positive = Positive Negative x Negative = Positive Positive x Negative = Negative Negative x Positive = Negative The rules for dividing integers are the same as multiplying integers. Exercises: Solve the following problems: No Calculators! 1. $$4 \cdot (-3) =$$ $$2. (-12) \cdot (-4) =$$ 3. $$(-8)(-3) =$$ 4. $$\frac{-14}{2}$$ = 5. $$\frac{28}{-4}$$ = 6. $$\frac{-36}{-6}$$ = $$7.6(-5) =$$ $$8.8(-4-6)=$$ 9. $$-6(9-11)=$$ 10. $$\frac{(-5)(-6)}{-2}$$ = 11. $$\frac{6(-4)}{8}$$ = 12. $$\frac{-56}{7^3}$$ = 13. $$\frac{-6-(-8)}{-2}$$ = 14. $$-7 + \frac{4 + (-6)}{-2} =$$ 16. $$(-4+7)(-5+3) =$$ 18. $$\frac{4+(-6)-5-3}{-6+4}$$ = 19. $$(-2)^3(-5-(-6)) =$$